Estimating lockdown-induced European NO<sub>2</sub> changes using satellite and surface observations and air quality models

Author:

Barré Jérôme,Petetin HervéORCID,Colette AugustinORCID,Guevara MarcORCID,Peuch Vincent-HenriORCID,Rouil Laurence,Engelen RichardORCID,Inness AntjeORCID,Flemming JohannesORCID,Pérez García-Pando CarlosORCID,Bowdalo Dene,Meleux Frederik,Geels CamillaORCID,Christensen Jesper H.ORCID,Gauss Michael,Benedictow Anna,Tsyro Svetlana,Friese Elmar,Struzewska Joanna,Kaminski Jacek W.,Douros John,Timmermans Renske,Robertson Lennart,Adani Mario,Jorba OriolORCID,Joly Mathieu,Kouznetsov RostislavORCID

Abstract

Abstract. This study provides a comprehensive assessment of NO2 changes across the main European urban areas induced by COVID-19 lockdowns using satellite retrievals from the Tropospheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5p satellite, surface site measurements, and simulations from the Copernicus Atmosphere Monitoring Service (CAMS) regional ensemble of air quality models. Some recent TROPOMI-based estimates of changes in atmospheric NO2 concentrations have neglected the influence of weather variability between the reference and lockdown periods. Here we provide weather-normalized estimates based on a machine learning method (gradient boosting) along with an assessment of the biases that can be expected from methods that omit the influence of weather. We also compare the weather-normalized satellite-estimated NO2 column changes with weather-normalized surface NO2 concentration changes and the CAMS regional ensemble, composed of 11 models, using recently published estimates of emission reductions induced by the lockdown. All estimates show similar NO2 reductions. Locations where the lockdown measures were stricter show stronger reductions, and, conversely, locations where softer measures were implemented show milder reductions in NO2 pollution levels. Average reduction estimates based on either satellite observations (−23 %), surface stations (−43 %), or models (−32 %) are presented, showing the importance of vertical sampling but also the horizontal representativeness. Surface station estimates are significantly changed when sampled to the TROPOMI overpasses (−37 %), pointing out the importance of the variability in time of such estimates. Observation-based machine learning estimates show a stronger temporal variability than model-based estimates.

Funder

Horizon 2020

European Research Council

AXA Research Fund

Ministerio de Ciencia, Innovación y Universidades

Ministerio de Ciencia e Innovación

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3