COVID-19 lockdown-induced changes in NO<sub>2</sub> levels across India observed by multi-satellite and surface observations

Author:

Biswal Akash,Singh VikasORCID,Singh Shweta,Kesarkar Amit P.ORCID,Ravindra Khaiwal,Sokhi Ranjeet S.,Chipperfield Martyn P.ORCID,Dhomse Sandip S.ORCID,Pope Richard J.,Singh Tanbir,Mor Suman

Abstract

Abstract. We have estimated the spatial changes in NO2 levels over different regions of India during the COVID-19 lockdown (25 March–3 May 2020) using the satellite-based tropospheric column NO2 observed by the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring Instrument (TROPOMI), as well as surface NO2 concentrations obtained from the Central Pollution Control Board (CPCB) monitoring network. A substantial reduction in NO2 levels was observed across India during the lockdown compared to the same period during previous business-as-usual years, except for some regions that were influenced by anomalous fires in 2020. The reduction (negative change) over the urban agglomerations was substantial (∼ 20 %–40 %) and directly proportional to the urban size and population density. Rural regions across India also experienced lower NO2 values by ∼ 15 %–25 %. Localised enhancements in NO2 associated with isolated emission increase scattered across India were also detected. Observed percentage changes in satellite and surface observations were consistent across most regions and cities, but the surface observations were subject to larger variability depending on their proximity to the local emission sources. Observations also indicate NO2 enhancements of up to ∼ 25 % during the lockdown associated with fire emissions over the north-east of India and some parts of the central regions. In addition, the cities located near the large fire emission sources show much smaller NO2 reduction than other urban areas as the decrease at the surface was masked by enhancement in NO2 due to the transport of the fire emissions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference93 articles.

1. Alonso-Blanco, E., Castro, A., Calvo, A. I., Pont, V., Mallet, M., and Fraile, R.: Wildfire smoke plumes transport under a subsidence inversion: Climate and health implications in a distant urban area, Sci. Total Environ., 619, 988–1002 2018.

2. Archer, C. L., Cervone, G., Golbazi, M., Al Fahel, N., and Hultquist, C.: Changes in air quality and human mobility in the USA during the COVID-19 pandemic, Bull. Atmospheric Sci. Technol., 1, 491–514, https://doi.org/10.1007/s42865-020-00019-0, 2020.

3. Barré, J., Petetin, H., Colette, A., Guevara, M., Peuch, V.-H., Rouil, L., Engelen, R., Inness, A., Flemming, J., Pérez García-Pando, C., Bowdalo, D., Meleux, F., Geels, C., Christensen, J. H., Gauss, M., Benedictow, A., Tsyro, S., Friese, E., Struzewska, J., Kaminski, J. W., Douros, J., Timmermans, R., Robertson, L., Adani, M., Jorba, O., Joly, M., and Kouznetsov, R.: Estimating lockdown induced European NO2 changes, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-995, in review, 2020.

4. Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., Gent, J. van, Eskes, H., Levelt, P. F., A, R. van der, Veefkind, J. P., Vlietinck, J., Yu, H., and Zehner, C.: Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations, Geophys. Res. Lett., 47, e2020GL087978, https://doi.org/10.1029/2020GL087978, 2020.

5. Bhuvan: Indian Geo-Platform of Indian Space Research Organisation, Thematic Services, available at: https://bhuvan.nrsc.gov.in, last access: 3 January 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3