Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2

Author:

Crippa Monica,Guizzardi Diego,Muntean Marilena,Schaaf Edwin,Dentener FrankORCID,van Aardenne John A.,Monni SuviORCID,Doering Ulrike,Olivier Jos G. J.,Pagliari Valerio,Janssens-Maenhout GreetORCID

Abstract

Abstract. The new version of the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2) compiles gaseous and particulate air pollutant emissions, making use of the same anthropogenic sectors, time period (1970–2012), and international activity data that is used for estimating GHG emissions, as described in a companion paper (Janssens-Maenhout et al., 2017). All human activities, except large scale biomass burning and land use, land-use change, and forestry are included in the emissions calculation. The bottom-up compilation methodology of sector-specific emissions was applied consistently for all world countries, providing methodological transparency and comparability between countries. In addition to the activity data used to estimate GHG emissions, air pollutant emissions are determined by the process technology and end-of-pipe emission reduction abatements. Region-specific emission factors and abatement measures were selected from recent available scientific literature and reports. Compared to previous versions of EDGAR, the EDGAR v4.3.2 dataset covers all gaseous and particulate air pollutants, has extended time series (1970–2012), and has been evaluated with quality control and quality assurance (QC and QA) procedures both for the emission time series (e.g. particulate matter – PM – mass balance, gap-filling for missing data, the split-up of countries over time, few updates in the emission factors, etc.) and grid maps (full coverage of the world, complete mapping of EDGAR emissions with sector-specific proxies, etc.). This publication focuses on the gaseous air pollutants of CO, NOx, SO2, total non-methane volatile organic compounds (NMVOCs), NH3, and the aerosols PM10, PM2.5, black carbon (BC), and organic carbon (OC). Considering the 1970–2012 time period, global emissions of SO2 increased from 99 to 103 Mt, CO from 441 to 562 Mt, NOx from 68 to 122 Mt, NMVOC from 119 to 170 Mt, NH3 from 25 to 59 Mt, PM10 from 37 to 65 Mt, PM2.5 from 24 to 41 Mt, BC from 2.7 to 4.5 Mt, and OC from 9 to 11 Mt. We present the country-specific emission totals and analyze the larger emitting countries (including the European Union) to provide insights on major sector contributions. In addition, per capita and per GDP emissions and implied emission factors – the apparent emissions per unit of production or energy consumption – are presented. We find that the implied emission factors (EFs) are higher for low-income countries compared to high-income countries, but in both cases decrease from 1970 to 2012. The comparison with other global inventories, such as the Hemispheric Transport of Air Pollution Inventory (HTAP v2.2) and the Community Emission Data System (CEDS), reveals insights on the uncertainties as well as the impact of data revisions (e.g. activity data, emission factors, etc.). As an additional metric, we analyze the emission ratios of some pollutants to CO2 (e.g. CO∕CO2, NOx∕CO2, NOx∕CO, and SO2∕CO2) by sector, region, and time to identify any decoupling of air pollutant emissions from energy production activities and to demonstrate the potential of such ratios to compare to satellite-derived emission data. Gridded emissions are also made available for the 1970–2012 historic time series, disaggregated for 26 anthropogenic sectors using updated spatial proxies. The analysis of the evolution of hot spots over time allowed us to identify areas with growing emissions and where emissions should be constrained to improve global air quality (e.g. China, India, the Middle East, and some South American countries are often characterized by high emitting areas that are changing rapidly compared to Europe or the USA, where stable or decreasing emissions are evaluated). Sector- and component-specific contributions to grid-cell emissions may help the modelling and satellite communities to disaggregate atmospheric column amounts and concentrations into main emitting sectors. This work addresses not only the emission inventory and modelling communities, but also aims to broaden the usefulness of information available in a global emission inventory such as EDGAR to also include the measurement community. Data are publicly available online through the EDGAR website http://edgar.jrc.ec.europa.eu/overview.php?v=432_AP and registered under https://doi.org/10.2904/JRC_DATASET_EDGAR.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3