Resonant absorption in expanding coronal magnetic flux tubes with uniform density

Author:

Howson T. A.ORCID,De Moortel I.,Antolin P.,Van Doorsselaere T.,Wright A. N.

Abstract

Aims. We investigate the transfer of energy between a fundamental standing kink mode and azimuthal Alfvén waves within an expanding coronal magnetic flux tube. We consider the process of resonant absorption in a loop with a non-uniform Alfvén frequency profile but in the absence of a radial density gradient. Methods. Using the three dimensional magnetohydrodynamic (MHD) code, Lare3d, we modelled a transversely oscillating magnetic flux tube that expands radially with height. An initially straight loop structure with a magnetic field enhancement was allowed to relax numerically towards a force-free state before a standing kink mode was introduced. The subsequent dynamics, rate of wave damping and formation of small length scales are considered. Results. We demonstrate that the transverse gradient in Alfvén frequency required for the existence of resonant field lines can be associated with the expansion of a high field-strength flux tube from concentrated flux patches in the lower solar atmosphere. This allows for the conversion of energy between wave modes even in the absence of the transverse density profile typically assumed in wave heating models. As with standing modes in straight flux tubes, small scales are dominated by the vorticity at the loop apex and by currents close to the loop foot points. The azimuthal Alfvén wave exhibits the structure of the expanded flux tube and is therefore associated with smaller length scales close to the foot points of the flux tube than at the loop apex. Conclusions. Resonant absorption can proceed throughout the coronal volume, even in the absence of visible, dense, loop structures. The flux tube and MHD waves considered are difficult to observe and our model highlights how estimating hidden wave power within the Sun’s atmosphere can be problematic. We highlight that, for standing modes, the global properties of field lines are important for resonant absorption and coronal conditions at a single altitude will not fully determine the nature of MHD resonances. In addition, we provide a new model in partial response to the criticism that wave heating models cannot self-consistently generate or sustain the density profile upon which they typically rely.

Funder

STFC

European Union Horizon 2020

Research Council of Norway: Centres of Excellence Scheme

Leverhulme Trust

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3