Damping of coronal oscillations in self-consistent 3D radiative magnetohydrodynamics simulations of the solar atmosphere

Author:

Kohutova P.ORCID,Antolin P.ORCID,Szydlarski M.ORCID,Carlsson M.ORCID

Abstract

Context. Oscillations are abundant in the solar corona. Coronal loop oscillations are typically studied using highly idealised models of magnetic flux tubes. In order to improve our understanding of coronal oscillations, it is necessary to consider the effect of a realistic magnetic field topology and the density structuring. Aims. We analyse the damping of coronal oscillations using a self-consistent 3D radiation-magnetohydrodynamics simulation of the solar atmosphere spanning from the convection zone into the corona, the associated oscillation dissipation and heating, and finally, the physical processes that cause the damping and dissipation. The simulated corona that forms in this model does not depend on any prior assumptions about the shape of the coronal loops. Methods. We analysed the evolution of a bundle of magnetic loops by tracing the magnetic field. Results. We find that the bundle of magnetic loops shows damped transverse oscillations in response to perturbations in two separate instances, with oscillation periods of 177 s and 191 s, velocity amplitudes of 10 km s−1 and 16 km s−1, and damping times of 176 s and 198 s. The coronal oscillations lead to the development of velocity shear in the simulated corona, which results in the formation of vortices seen in the velocity field that are caused by the Kelvin-Helmholtz instability. This contributes to the damping and dissipation of the transverse oscillations. Conclusions. The oscillation parameters and evolution we observed are in line with the values that are typically seen in observations of coronal loop oscillations. The dynamic evolution of the coronal loop bundle suggests that the models of monolithic and static coronal loops with constant lengths might need to be re-evaluated by relaxing the assumption of highly idealised wave guides.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3