Winking filaments due to cyclic evaporation-condensation

Author:

Zhou YuhaoORCID,Li XiaohongORCID,Hong JieORCID,Keppens RonyORCID

Abstract

Context. Observations have shown that some filaments appear and disappear in the Hα line wing images periodically. There have been no attempts to model these “winking filaments” thus far. Aims. The evaporation-condensation mechanism is widely used to explain the formation of solar filaments. Here, we demonstrate, for the first time, how multi-dimensional evaporation-condensation in an arcade setup invariably causes a stretching of the magnetic topology. We aim to check whether this magnetic stretching during cyclic evaporation-condensation could reproduce a winking filament. Methods. We used our open-source code MPI-AMRVAC to carry out 2D magnetohydrodynamic simulations based on a quadrupolar configuration. A periodic localized heating, which modulates the evaporation-condensation process, was imposed before, during, and after the formation of the filament. Synthetic Hα and 304 Å images were produced to compare the results with observations. Results. For the first time, we noticed the winking filament phenomenon in a simulation of the formation of on-disk solar filaments, which was in good agreement with observations. Typically, the period of the winking is different from the period of the impulsive heating. A forced oscillator model explains this difference and fits the results well. A parameter survey is also done to look into details of the magnetic stretching phenomenon. We found that the stronger the heating or the higher the layer where the heating occurs, the more significant the winking effect appears.

Funder

Research Foundation – Flanders

European Research Council

NSFC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mass Cycle and Dynamics of a Virtual Quiescent Prominence;The Astrophysical Journal;2024-08-01

2. Frozen-field Modeling of Coronal Condensations with MPI-AMRVAC. I. Demonstration in Two-dimensional Models;The Astrophysical Journal;2024-06-01

3. Radiative loss and ion-neutral collisional effects in astrophysical plasmas;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

4. A Possible Mechanism for the “Late Phase” in Stellar White-light Flares;The Astrophysical Journal;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3