Affiliation:
1. School of Mathematics and Statistics, University of St Andrews , St Andrews, Fife KY16 9SS, UK
2. Division of Computing and Mathematics, Abertay University , Kydd Building, Dundee DD1 1HG, UK
Abstract
ABSTRACT
Straightened cylindrical models of coronal loops have been standard for decades, and shown to support nanoflare-like heating, but the influence of geometric curvature in models upon the heating produced has not been discussed in depth. Heating, its spatiotemporal distributions, and the associated mechanisms responsible are discussed, and compared with those from straightened models of a coronal loop. Previously, magnetohydrodynamic avalanches have been generalized to curved loops, and shown to be viable. From that study, the associated heating is analysed and discussed in depth. Heating is seen to arise from processes originally instigated, yet not dominated, by magnetic reconnection, producing bursty, aperiodic nanoflares, dispersed evenly throughout the corona, but with a modest bias away from footpoints. One novelty arising is the simultaneous yet independent occurrence of nanoflare-like events at disjoint sites along individual strands, anticipating some features recently seen in ‘campfires’ by Solar Orbiter. With a view to future refinements in the model and to the inclusion of additional physical effects, the implications of this analysis are discussed.
Funder
Science and Technology Facilities Council
University of St Andrews
Abertay University
European Research Council
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献