Lithium in red giant stars: Constraining non-standard mixing with large surveys in the Gaia era

Author:

Charbonnel C.,Lagarde N.,Jasniewicz G.,North P. L.,Shetrone M.,Krugler Hollek J.,Smith V. V.,Smiljanic R.,Palacios A.,Ottoni G.

Abstract

Context. Li is extensively known to be a good tracer of non-standard mixing processes occurring in stellar interiors. Aims. We present the results of a new large Li survey in red giant stars and combine it with surveys from the literature to probe the impact of rotation-induced mixing and thermohaline double-diffusive instability along stellar evolution. Methods. We determined the surface Li abundance for a sample of 829 giant stars with accurate Gaia parallaxes for a large sub-sample (810 stars) complemented with accurate HIPPARCOS parallaxes (19 stars). The spectra of our sample of northern and southern giant stars were obtained in three ground-based observatories (Observatoire de Haute-Provence, ESO-La Silla, and the Mc Donald Observatory). We determined the atmospheric parameters (Teff, log(g) and [Fe/H]), and the Li abundance. We used Gaia parallaxes and photometry to determine the luminosity of our objects and we estimated the mass and evolution status of each sample star with a maximum-likelihood technique using stellar evolution models computed with the STAREVOL code. We compared the observed Li behaviour with predictions from stellar models, including rotation and thermohaline mixing. The same approach was used for stars from selected Li surveys from the literature. Results. Rotation-induced mixing accounts nicely for the Li behaviour in stars warmer than about 4200 K, independently of the mass domain. For stars with masses lower than 2 M thermohaline mixing leads to further Li depletion below the Teff of the RGB bump (about 4000 K), and on the early asymptotic giant branch, as observed. Depending on the definition we adopt, we find between 0.8 and 2.2% of Li-rich giants in our new sample. Conclusions.Gaia puts a new spin on the understanding of mixing processes in stars, and our study confirms the importance of rotation-induced processes and of thermohaline mixing. However asteroseismology is required to definitively pinpoint the actual evolution status of Li-rich giants.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3