Lithium Abundances from the LAMOST Medium-resolution Survey Data Release 9

Author:

Ding Ming-YiORCID,Shi Jian-RongORCID,Yan Hong-liangORCID,Li Chun-QianORCID,Gao QiORCID,Chen Tian-YiORCID,Zhang Jing-HuaORCID,Liu ShuaiORCID,Xie Xiao-JinORCID,Tang Yao-Jia,Zhou Ze-MingORCID,Wang Jiang-TaoORCID

Abstract

Abstract Lithium is a fragile but crucial chemical element in the Universe, and exhibits interesting and complex behaviors. Thanks to the mass of spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) medium-resolution survey (MRS), we can investigate the lithium abundances in a large and diverse sample of stars, which could bring vital help in studying the origin and evolution of lithium. In this work, we use the Li i 6707.8 Å line to derive the lithium abundance through a template-matching method. A catalog of precise lithium abundance is presented for 795,384 spectra corresponding to 455,752 stars from the LAMOST MRS Data Release 9. Comparing our results with those of external high-resolution references, we find good consistency with a typical deviation of σ A(Li) ∼ 0.2 dex. We also analyze the internal errors using stars that have multiple LAMOST MRS observations, which will reach as low as 0.1 dex when the signal-to-noise ratio of the spectra is >20. Besides, our result indicates that a small fraction of giant stars still exhibit a surprisingly high lithium content, and 967 stars are identified as Li-rich giants with A(Li) > 1.5 dex, accounting for ∼2.6% of our samples. If one takes into account the fact that nearly all stars deplete lithium during the main sequence, then the fraction of Li-rich stars may far exceed 2.6%. This new catalog covers a wide range of stellar evolutionary stages from pre-main sequence to giants, and will provide help to the further study of the chemical evolution of lithium.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

CAS ∣ Youth Innovation Promotion Association

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3