The true nature of HE 0057-5959, the most metal-poor, Li-rich star

Author:

Mucciarelli A.ORCID,Bonifacio P.ORCID,Monaco L.ORCID,Salaris M.,Matteuzzi M.ORCID

Abstract

The Li-rich stars are a class of rare objects with a surface lithium abundance, A(Li), that exceeds that of other stars in the same evolutionary stage. The origin of these stars is still debated, and valuable routes to look at include the Cameron-Fowler mechanism, a mass-transfer process in a binary system, or the engulfment of rocky planets or brown dwarfs. Metal-poor ([Fe/H]<−1 dex) stars are only a small fraction of the entire population of Li-rich stars. We observed the metal-poor ([Fe/H]=−3.95±0.11 dex) giant star HE 0057–5959 with MIKE at the Magellan Telescope, deriving A(Li)NLTE=+2.09±0.07 dex. Such an Li abundance is significantly higher, by about 1 dex, than that of other stars at the same evolutionary stage. A previous analysis of the same target suggested that its high A(Li) reflects an ongoing first-dredge-up process. We revised the nature of HE 0057-5959 by comparing its stellar parameters and A(Li) with appropriate stellar evolution models describing Li depletion due to the deepening of the convective envelope. This comparison rules out that HE 0057-5959 is caught during its first dredge-up, the latter having already ended according to the parameters of this star. Its A(Li), remarkably higher than the typical lithium plateau drawn by similar giant stars, demonstrates that HE 0057-5959 joins the class of the rare metal-poor, Li-rich stars. HE 0057-5959 is the most metal-poor, Li-rich star discovered so far. We considered different scenarios to explain this star also comparing it with the other metal-poor, Li-rich stars. No internal mixing able to activate the Cameron-Fowler mechanism is known for metal-poor stars at this evolutionary stage. The engulfment of planets is also disfavoured because such metal-poor stars should not host planets. Finally, HE 0057-5959 is one of the most Na-rich among the Li-rich stars, and we found that a strong excess of Na abundance is common to all three Li-rich stars with [Fe/H]<–3 dex. This finding could support the scenario of mass transfer from a massive companion star (able to simultaneously produce large amounts of both elements) in a binary system, even if we found no evidence of radial velocity variations.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3