Heavy Metal Rules. I. Exoplanet Incidence and Metallicity

Author:

Adibekyan VardanORCID

Abstract

The discovery of only a handful of exoplanets required establishing a correlation between giant planet occurrence and metallicity of their host stars. More than 20 years have already passed from that discovery, however, many questions are still under lively debate: (1) What is the origin of that relation?; (2) What is the exact functional form of the giant planet–metallicity relation (in the metal-poor regime)?; and (3) Does such a relation exist for terrestrial planets? All of these questions are very important for our understanding of the formation and evolution of (exo)planets of different types around different types of stars and are the subject of the present manuscript. Besides making a comprehensive literature review about the role of metallicity on the formation of exoplanets, I also revisited most of the planet–metallicity related correlations reported in the literature using a large and homogeneous data provided by the SWEET-Cat catalog. This study led to several new results and conclusions, two of which I believe deserve to be highlighted in the abstract: (i) the hosts of sub-Jupiter mass planets (∼0.6–0.9 M♃) are systematically less metallic than the hosts of Jupiter-mass planets. This result might be related to the longer disk lifetime and the higher amount of planet building materials available at high metallicities, which allow a formation of more massive Jupiter-like planets; (ii) contrary to the previous claims, our data and results do not support the existence of a breakpoint planetary mass at 4 M♃ above and below which planet formation channels are different. However, the results also suggest that planets of the same (high) mass can be formed through different channels depending on the (disk) stellar mass i.e., environmental conditions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference298 articles.

1. Entretiens sur la Pluralite des Mondes;Fontenelle,1686

2. Le Soleil, Etoile Variable;Belorizky;L’Astronomie,1938

3. Proposal for a project of high-precision stellar radial velocity work;Struve;Observatory,1952

4. A planetary system around the millisecond pulsar PSR1257 + 12

5. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3