12C/13C of Kepler giant stars: The missing piece of the mixing puzzle

Author:

Lagarde N.ORCID,Minkevičiūtė R.,Drazdauskas A.,Tautvaišienė G.ORCID,Charbonnel C.,Reylé C.ORCID,Miglio A.ORCID,Kushwahaa T.ORCID,Bale B.

Abstract

Context. Despite a rich observational background, few spectroscopic studies have dealt with the measurement of the carbon isotopic ratio in giant stars. However, it is a key element in understanding the mixing mechanisms that occur in the interiors of giant stars. Aims. We present the CNO and 12C/13C abundances derived for 71 giant field stars. Then, using this new catalogue and complementary data from the Kepler and Gaia satellites, we study the efficiency of mixing occurring in the giant branch as a function of the stellar properties of the stars (e.g. mass, age, metallicity). Methods. We determined the abundances of CNO and more specifically the carbon isotopic ratio using the high-resolution FIbre-fed Echelle Spectrograph on the Nordic Optical Telescope, for 71 giant field stars. In addition, asteroseismology from the Kepler satellite is available for all stars, providing the stellar masses, ages, and evolutionary states. Finally, astrometry from the Gaia data is also available for most of the sample. We compare these new determinations with stellar evolution models taking into account the effects of transport processes. To exploit the complete potential of our extensive catalogue, and considering both the Milky Way evolution and the impact of stellar evolution, we built mock catalogues using the Besançon Galaxy model in which stellar evolution models taking into account the effects of thermohaline instability are included. Results. We confirm that the carbon isotopic ratio at the surface of core He-burning stars is lower than that of first-ascent RGB stars. The carbon isotopic ratio measured at the surface of the core He-burning stars increases with [Fe/H] and stellar mass, while it decreases with stellar age. These trends are all nicely explained by the thermohaline mixing that occurs in red giants. We show that our models can explain the behaviour of 12C/13C versus N/O, although the observations seem to show a lower N/O than the models. We also note that more constraints on the thick disc core He-burning stars are needed to understand this difference. Conclusions. Overall, the current model including thermohaline mixing is able to reproduce very well the 12C/13C with the stellar metallicity and with the stellar mass and age.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3