Idealised simulations of the deep atmosphere of hot Jupiters

Author:

Sainsbury-Martinez F.ORCID,Wang P.,Fromang S.ORCID,Tremblin P.ORCID,Dubos T.ORCID,Meurdesoif Y.,Spiga A.ORCID,Leconte J.ORCID,Baraffe I.,Chabrier G.,Mayne N.,Drummond B.,Debras F.ORCID

Abstract

Context. The anomalously large radii of hot Jupiters has long been a mystery. However, by combining both theoretical arguments and 2D models, a recent study has suggested that the vertical advection of potential temperature leads to a hotter adiabatic temperature profile in the deep atmosphere than the profile obtained with standard 1D models. Aims. In order to confirm the viability of that scenario, we extend this investigation to 3D, time-dependent models. Methods. We use a 3D general circulation model DYNAMICO to perform a series of calculations designed to explore the formation and structure of the driving atmospheric circulations, and detail how it responds to changes in both the upper and deep atmospheric forcing. Results. In agreement with the previous, 2D study, we find that a hot adiabat is the natural outcome of the long-term evolution of the deep atmosphere. Integration times of the order of 1500 yr are needed for that adiabat to emerge from an isothermal atmosphere, explaining why it has not been found in previous hot Jupiter studies. Models initialised from a hotter deep atmosphere tend to evolve faster toward the same final state. We also find that the deep adiabat is stable against low-levels of deep heating and cooling, as long as the Newtonian cooling timescale is longer than ~3000 yr at 200 bar. Conclusions. We conclude that steady-state vertical advection of potential temperature by deep atmospheric circulations constitutes a robust mechanism to explain the inflated radii of hot Jupiters. We suggest that future models of hot Jupiters be evolved for a longer time than currently done, and when possible that models initialised with a hot deep adiabat be included. We stress that this mechanism stems from the advection of entropy by irradiation-induced mass flows and does not require a (finely tuned) dissipative process, in contrast with most previously suggested scenarios.

Funder

ERC

Leverhulme

STFC

CNRS-INSU

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference51 articles.

1. Accuracy tests of radiation schemes used in hot Jupiter global circulation models

2. The UK Met Office global circulation model with a sophisticated radiation scheme applied to the hot Jupiter HD 209458b

3. THERMAL TIDES IN FLUID EXTRASOLAR PLANETS

4. The physical properties of extra-solar planets

5. Baraffe I., Chabrier G., Fortney J., & Sotin C. 2014, in Protostars and Planets VI, ed. Beuther H., Klessen R. S., Dullemond C. P., & Henning T. (Tucson: University of Arizona Press), 763

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3