Abstract
Context. Eccentric exoplanets offer an opportunity to study the response of an atmosphere to changing thermal forcing and the robustness of the super-rotating equatorial jet seen on tidally locked hot Jupiters. However, the atmospheric dynamics on eccentric planets strongly depend on the planetary rotation period, which is difficult to constrain observationally. The ringing phenomenon, whereby the observed emission increases and decreases after the periastron passage as the flash-heated hemisphere rotates into and out of view, can provide a tight constraint on rotation.
Aims. We studied five highly eccentric transiting exoplanets HAT-P-2 b, HD 80606 b, TOI-3362 b, TOI-4127 b and HD 17156 b to find which displays strong ringing signals that are sufficiently strong for the James Webb Space Telescope (JWST) to detect.
Methods. We implemented the treatment of eccentricity and non-synchronous rotation in the non-grey climate model expeRT/MITgcm and generated synthetic light curves.
Results. We find four detectable ringing peaks on HD 80606 b and some undetectable ringing on TOI-4127 b and HD 17156 b. The lack of clouds, photo-chemistry and obliquity in our models may have led us to overestimate the amplitude of the ringing however. The strength of the ringing signal is mostly determined by the eccentricity, planetary rotation period, planet-to-star radius ratio and apparent magnitude of the system. We searched for more exoplanets that could show ringing but found no candidates as promising as HD 80606 b.
Conclusions. We recommend prioritising HD 80606 b as a target for ringing with JWST. A baseline of five days after the periastron passage would capture three ringing peaks, which is sufficient to tightly constrain the planetary rotation period. An extension to seven days would add a fourth peak, which would allow us to verify the rotation period.
Funder
H2020 Marie Skłodowska-Curie Actions
KU Leuven