Photodissociation and induced chemical asymmetries on ultra-hot gas giants

Author:

Baeyens RobinORCID,Désert Jean-Michel,Petrignani AnnemiekeORCID,Carone Ludmila,Schneider Aaron David

Abstract

Context. Recent observations have resulted in the detection of chemical gradients on ultra-hot gas giants. Notwithstanding their high temperature, chemical reactions in ultra-hot atmospheres may occur in disequilibrium, due to vigorous day-night circulation and intense UV radiation from their stellar hosts. Aims. The goal of this work is to explore whether photochemistry is affecting the composition of ultra-hot giant planets, and if it can introduce horizontal chemical gradients. In particular, we focus on hydrogen cyanide (HCN) on WASP-76 b, as it is a photochemically active molecule with a reported detection on only one side of this planet. Methods. We used a pseudo-2D chemical kinetics code to model the chemical composition of WASP-76 b along its equator. Our approach improved on chemical equilibrium models by computing vertical mixing, horizontal advection, and photochemistry. Results. We find that the production of HCN is initiated through the thermal and photochemical dissociation of CO and N2 on the day side of WASP-76 b. The resulting radicals are subsequently transported to the night side via the equatorial jet stream, where they recombine into different molecules. This process results in an HCN gradient with a maximal abundance on the planet’s morning limb. We verified that photochemical dissociation is a necessary condition for this mechanism, as thermal dissociation alone proves insufficient. Other species produced via night-side disequilibrium chemistry are SO2 and S2. Conclusions. Our model acts as a proof of concept for chemical gradients on ultra-hot exoplanets. We demonstrate that even ultra-hot planets can exhibit disequilibrium chemistry and recommend that future studies do not neglect photochemistry in their analyses of ultra-hot planets.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3