New high-precision strong lensing modeling of Abell 2744

Author:

Bergamini P.ORCID,Acebron A.ORCID,Grillo C.ORCID,Rosati P.ORCID,Caminha G. B.ORCID,Mercurio A.,Vanzella E.ORCID,Angora G.ORCID,Brammer G.,Meneghetti M.ORCID,Nonino M.ORCID

Abstract

We present a new strong lensing (SL) model of the Hubble Frontier Fields (HFF) galaxy cluster Abell 2744, at z = 0.3072, by exploiting archival Hubble Space Telescope (HST) multiband imaging and Multi Unit Spectroscopic Explorer (MUSE) follow-up spectroscopy. The lens model considers 90 spectroscopically confirmed multiple images (from 30 background sources), representing the largest secure sample for this cluster field prior to the recently acquired James Webb Space Telescope (JWST) observations. The inclusion of the substructures within several extended sources as model constraints allowed us to accurately characterize the inner total mass distribution of the cluster and the position of the cluster critical lines. We included the lensing contribution of 225 cluster members, 202 of which are spectroscopically confirmed. We complemented this sample with 23 photometric member galaxies that are identified with a convolution neural network methodology with a high degree of purity. We also measured the internal velocity dispersion of 85 cluster galaxies, down to mF160W = 22, to independently estimate the role of the subhalo mass component in the lens model. We investigated the effect of the cluster environment on the total mass reconstruction of the cluster core with two different mass parameterizations. We considered the mass contribution from three external clumps, either based on previous weak lensing studies, or extended HST imaging of luminous members around the cluster core. In the latter case, the observed positions of the multiple images were better reproduced, with a remarkable accuracy of 0.​​″37, a factor of ∼2 smaller than previous lens models, which exploited the same HST and MUSE data sets. As part of this work, we developed and made publicly available a Strong Lensing Online Tool (SLOT) to exploit the predictive power and the full statistical information of this and future models, through a simple graphical interface. We plan to apply our new high-precision SL model to the first analysis of the Grism Lens-Amplified Survey from Space-JWST-Early Release Science (GLASS-JWST-ERS) program, specifically to measure the intrinsic physical properties of high-z galaxies from robust magnification maps.

Funder

PRIN-MIUR

European Union’s Horizon 2020

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3