CURLING – I. The influence of point-like image approximation on the outcomes of cluster strong lens modelling

Author:

Xie Yushan12,Shan Huanyuan123,Li Nan4,Li Ran245,Jullo Eric6,Su Chen12,Cao Xiaoyue24,Kneib Jean-Paul7,Acebron Ana8910,He Mengfan124,Yao Ji1,Wang Chunxiang245,Li Jiadong11,Li Yin12ORCID

Affiliation:

1. Shanghai Astronomical Observatory , Chinese Academy of Sciences, Shanghai 200030 , China

2. School of Astronomy and Space Science , University of Chinese Academy of Sciences, Beijing 100049 , China

3. Key Laboratory of Radio Astronomy and Technology , Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100101, P. R . China

4. National Astronomical Observatory , Chinese Academy of Sciences, Beijing 100012 , China

5. Institute for Frontiers in Astronomy and Astrophysics , Beijing Normal University, Beijing 102206 , China

6. LAM, CNRS, Aix Marseille Université , CNES, Marseille 13388 , France

7. Laboratory of Astrophysics , École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix , Switzerland

8. Instituto de Física de Cantabria (IFCA) , CSIC - Universidad de Cantabria, Avda. los Castros, s/n, E-39005 Santander , Spain

9. Departamento de Física Moderna , Universidad de Cantabria, Avda. de los Castros s/n, E-39005 Santander , Spain

10. Dipartimento di Fisica , Università degli Studi di Milano, Via Celoria 16, I-20133 Milano , Italy

11. Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg , Germany

12. Department of Mathematics and Theory , Peng Cheng Laboratory, Shenzhen, Guangdong 518066 , China

Abstract

ABSTRACT Cluster-scale strong lensing is a powerful tool for exploring the properties of dark matter and constraining cosmological models. However, due to the complex parameter space, pixelized strong lens modelling in galaxy clusters is computationally expensive, leading to the point-source approximation of strongly lensed extended images, potentially introducing systematic biases. Herein, as the first paper of the ClUsteR strong Lens modelIng for the Next-Generation observations (CURLING) program, we use lensing ray-tracing simulations to quantify the biases and uncertainties arising from the point-like image approximation for JWST-like observations. Our results indicate that the approximation works well for reconstructing the total cluster mass distribution, but can bias the magnification measurements near critical curves and the constraints on the cosmological parameters, the total matter density of the universe Ωm, and dark energy equation of state parameter w. To mitigate the biases, we propose incorporating the extended surface brightness distribution of lensed sources into the modelling. This approach reduces the bias in magnification from 46.2 per cent to 0.09 per cent for μ ∼ 1000. Furthermore, the median values of cosmological parameters align more closely with the fiducial model. In addition to the improved accuracy, we also demonstrate that the constraining power can be substantially enhanced. In conclusion, it is necessary to model cluster-scale strong lenses with pixelized multiple images, especially for estimating the intrinsic luminosity of highly magnified sources and accurate cosmography in the era of high-precision observations.

Funder

National Key Research and Development Program of China

Ministry of Science and Technology of the People's Republic of China

NSFC

CAS

Program of Shanghai Academic/Technology Research Leader

National Nature Science Foundation of China

Horizon 2020

Marie Skłodowska-Curie Actions

CNES

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3