Ni/4H-SiC Ohmic Contact Formation Using Multipulse Nanosecond Laser Annealing

Author:

Opprecht Mathieu1,Kerdilès Sébastien1,Biscarrat Jérôme1,Godignon Philippe1,Masante Cédric1,Laviéville Romain1,Vaxelaire Nicolas1,Gergaud Patrice1,Grenier Adeline1,Jung Carl1,Roze Fabien2,Chehadi Zeinab2,Thuries Louis2,Lu Lu2,Tabata Toshiyuki2ORCID

Affiliation:

1. Université Grenoble Alpes

2. Laser Systems & Solutions of Europe (LASSE)

Abstract

Nowadays, the growing worldwide electrification requires new materials for power management. SiC currently dominates the market thanks to excellent energy efficiency and broad operating capabilities. The present paper proposes an experimental study of the Ni-SiC backside ohmic contact formation using 308 nm nanosecond laser annealing (NLA). After Nickel (80 nm) sputtering over 4H-SiC wafers, various laser conditions are investigated, with energy density (ED) ranging from 2.4 to 5.4 J/cm², pulse number from 1 to 20 and chuck temperature from 25 °C (RT) to 400 °C. For all series, a common scenario is noticed as the ED increases, with first solid-state reactions, then local melt and, finally, complete top layer melt and de-wetting at high ED. An in-depth understanding of the impact of laser conditions on these stages is achieved, based on electrical data, Raman spectroscopy, optical microscopy, Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM). Results reveal that both high pulse numbers and the use of a hot chuck enable to significantly reduce the ED needed to form low resistance contacts. In addition, sheet resistances and contact resistivities are linked to the microstructure evolution upon NLA exposure. As a proof-of-concept, an acceptable process point yields a contact resistivity around 5×10-5 Ω cm² when the wafer is processed at 25 °C and a value as low as 10-5 Ω cm² for 400 °C processing. The mechanisms involved and discussed in the present work may very likely pave the way for other contact formation with limited thermal budget.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3