Affiliation:
1. Istituto per la Microelettronica e Microsistemi (CNR-IMM)
2. STMicroelectronics
Abstract
Manufacturing of Silicon Carbide (SiC) based devices will soon require the accuracy and control typical of the advanced Si based nanoelectronics. As a consequence, the processes development will surely benefit of technology computer aided design (TCAD) tools dedicated to the current and future SiC process technologies. Plasma etching is one of the most critical and difficult process for optimization procedures in the micro/nanofabrication area, since the resultant 2D (e.g. in trenches) or 3D (e.g in holes) profiling is the consequence of the complex interactions between plasma and materials in the device structures. In this contribution we present a simulation tool dedicated to the etching simulation of SiC structures based on the sequential combination of a plasma scale global model and feature scale Kinetic Monte Carlo simulations. As an example of the approach validation procedure the simulations are compared with the characterization analysis of particular real process results.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献