Channeled Implantations of p-Type Dopants into 4H-SiC at Different Temperatures

Author:

Linnarsson Margareta K.1,Hallén Anders2,Vines Lasse3,Svensson Bengt G.3

Affiliation:

1. KTH, Royal Institute of Technology

2. KTH Royal Institute of Technology

3. University of Oslo

Abstract

Channeling of B and Al ions in 4H-SiC(0001), has been investigated by secondary ion mass spectrometry (SIMS). Ion implantations have been performed between room temperature (RT) and 600 °C at various fluences. Before implantation, the major crystal axes were determined and the sample was aligned using the blocking pattern of backscattered protons. As expected, the depth distribution of the implanted ions along a crystal direction penetrates much deeper compared to non-channeling directions. At elevated temperatures, the channeling depth for 100 keV Al-ions is decreased due to lattice vibrations. For 50 keV B-ions, the temperature effect is minor, indicating a smaller interaction between target atoms and B. Simulations has been performed using SIIMPL, a Monte Carlo simulation code based on the binary collision approximation, to predict experimental data and get a deeper insight in the channeling process.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of Random and Channeled Implants of Al Ion into 4H-SiC (0001);2023 20th China International Forum on Solid State Lighting & 2023 9th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS);2023-11-27

2. Al Implantation in Sic; Where Will the Ions Come to Rest?;Solid State Phenomena;2023-05-30

3. Influence from the electronic shell structure on the range distribution during channeling of 40–300 keV ions in 4H-SiC;Journal of Applied Physics;2021-08-21

4. Lateral spreads of ion-implanted Al and P atoms in silicon carbide;Japanese Journal of Applied Physics;2021-04-28

5. Ion implantation of aluminum in 4H-SiC epilayers from 90 keV to above 1 MeV;Solid-State Electronics;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3