Robust Measurement of Damping Ratios of a Railway Contact Wire Using Wavelet Transforms

Author:

Cho Yong Hyeon1,Lee Jang Moo2,Park Sung Yong2,Lee Eung Shin2

Affiliation:

1. Korea Railroad Research Institute

2. Seoul National University

Abstract

The aim of this paper is to propose a robust method for extracting damping ratios of a railway contact wire using a continuous wavelet transform (CWT). It is hard to measure the damping ratios of the contact wire because the contact wire has close natural modes in a low frequency range and the dynamic signals of the contact wire gathered in the field are easily corrupted by extraneous noises. The proper choice of the wavelet parameters to decouple the close modes is required in order to obtain accurate damping ratios for the railway contact wire. In this paper, we investigated CWT error terms and derived a relation between a frequency resolution and complex Morlet wavelet parameters. In order to show the accuracy of the proposed method, we extracted damping ratios for the simulated pure and noisy signals which have close natural modes. According to the results, the proposed method can provide the damping ratios well agreed with true ones even for the noisy data. Finally, we applied the proposed method to the contact wire of a conventional railway line in Korea in order to verify the applicability in the field. The damping ratios extracted from the real data were in the range from 0.01 to 0.04.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3