Thermal Analysis of a Face-to-Back Bonded Four-Layer Stacked 3D IC Model

Author:

Du Xiu Yun1,Tang Zhe Nan1

Affiliation:

1. Dalian University of Technology

Abstract

Three dimensional integrated circuits (3D ICs) consisted of stacking and vertically interconnecting are an emerging technology with great potential for improving system performance. 3D integration relies on Through Silicon Via (TSV) interconnection and interlayer bonding between the silicon layers. Due to the advantages of higher device density, lesser signal delay, shorter interconnection length and smaller package size, this technology attracts growing attentions. A number of innovative processes contribute to the realization of 3D IC. These include back grinding, coating, cleaning, etching, wafer thinning, filling of high aspect ratio vias with electroplated copper and interlayer bonding, etc. In this work, finite element models for four-layer stacked TSV-based (Through Silicon Via) 3D IC are established based on the heat distribution of working process caused by heat source in device die, in order to investigate the thermal effects and determine the improvements required. The transient temperature fields of 3D IC structures are obtained. The effects of various geometric parameters and thermal properties on the overall temperature have been analyzed. The result indicates that TSV diameter, pitch, BCB thickness and BEOL conductivity play more important roles to the temperature increment and the maximum temperature of no TSV structures is several times of that of TSV-based structures. The copper provides for an effective heat conduction path, and reduces considerably the overall temperature. It is also shown that the heat path from chip to the bottom surface is the main way for the heat dissipation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3