Origin of the Warpage of 3C-SiC Wafer: Effect of Nonuniform Intrinsic Stress

Author:

Sun Yu1,Izumi Satoshi1,Sakai Shinsuke1,Yagi Kuniaki2,Nagasawa Hiroyuki2

Affiliation:

1. University of Tokyo

2. Hoya Corporation

Abstract

Technique of bulk-like 3C-SiC film (up to 300 µm) growth on undulant-Si substrate is known to be very effective to reduce stacking fault density as well as that of other planar defects. However, freestanding 3C-SiC wafer shows anisotropic warpage involving large convex curvature in the direction perpendicular to the ridge of undulation ([110] direction), and slight concave curvature in parallel direction ([-110] direction), i.e. saddle shape. In this paper the origin of the warpage of the 3C-SiC wafer is investigated. Ex-situ curvature measurements and stress calculation reveal that large compressive intrinsic stress is generated during high-temperature growth process (1623 K) in both parallel and perpendicular directions. In order to investigate the intrinsic stress distribution along the [001] direction, a reactive ion etching (RIE) is conducted for the 3C-SiC on Si substrate to observe the dependence of the SiC/Si system curvature as a function of 3C-SiC thickness. This observation shows that the intrinsic stress component perpendicular to the ridge of undulation presents nonuniform distribution in [001] direction. The remarkable change in the intrinsic stress is observed in the 50 µm-thick region from SiC/Si interface. A finite element method simulation using the obtained intrinsic stress distribution clearly explains that the anisotropic warpage of SiC wafer is induced by the intrinsic stress distribution in quantitative manner. Microstructure change induced by stacking fault reduction process (stacking fault collision) would be the cause of the intrinsic stress variation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3