Author:
Mizuno Tomohisa,Kanazawa Rikito,Yamamoto Kazuhiro,Murakawa Kohki,Yoshimizu Kazuma,Tanaka Midori,Aoki Takashi,Sameshima Toshiyuki
Abstract
Abstract
We experimentally studied three types of group-IV-semiconductor quantum-dots (IV-QDs) of Si-, SiC-, and C-QDs in a thermal SiO2 layer that were fabricated using a very simple hot-ion implantation technique for Si+, double Si+/C+, and C+ into the SiO2 layer, respectively, to realize a different wavelength photoluminescence (PL) emission from near-IR to near-UV ranges. TEM analyses newly confirmed both Si- and C-QDs with a diameter of approximately 2–4 nm in addition to SiC-QDs in SiO2. We successfully demonstrated very strong PL emission from three IV-QDs, and the peak photon energies (E
PH) (peak PL-wavelength) of Si-, and SiC-, and C-QDs were approximately 1.56 eV (800 nm), 2.5 eV (500 nm), and 3.3 eV (380 nm), respectively. IV-QDs showed that the PL properties strongly depend on the hot-ion doses of Si and C atoms and the post N2 annealing processes. Consequently, it is easy to design peak PL wavelengths by controlling the ion doses of Si+ and C+ implanted into the SiO2 layer.
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献