Photoluminescence enhancement from hot nitrogen-ion implanted Si quantum dots embedded within SiO2 layer

Author:

Mizuno Tomohisa1ORCID,Murakawa Koki1

Affiliation:

1. Department of Science, Kanagawa University , Yokohama, Kanagawa 221-8686, Japan

Abstract

Using the novel process of hot N+-ion implantation at 800 °C into Si quantum dots (Si-QDs) with approximately 3.2 nm fabricated by hot Si+-ion implantation into an SiO2 layer and post-Ar annealing, we experimentally demonstrated that the photoluminescence intensity (IPL) of the Si-QDs increased with increasing N+-ion dose (DN+). Post-N2 high-temperature annealing without hot N+-ion implantation, as a reference process, also increased the IPL of Si-QDs, because N atoms trapped within Si-QDs, which was evaluated by secondary ion mass spectrometry, terminate the dangling bonds within Si-QDs and at the Si/SiO2 interface. Additionally, the IPL of Si-QDs showed the maximum value at the optimal DN+ of 5 × 1015 cm−2, which was 1.4-fold higher than that observed without hot N+-ion implantation. With a short post-annealing time (<60 min), the increase in IPL owing to N+-ion implantation was considerably larger than that caused by N2 annealing, which is likely due to the efficiency of the termination of the dangling bonds of the Si-QDs by the N+-ions. This is an advantage of the hot N+-ion implantation technique. Forming gas annealing after furnace annealing also induced a larger IPL than that observed before forming gas annealing. However, the maximum IPL observed after forming gas annealing was completely independent of the conditions of furnace annealing and DN+. This suggests that the perfect termination of the dangling bonds of the Si-QDs may be realized via forming gas annealing after furnace annealing.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3