Abstract
Abstract
β-Ga2O3 has a high potential for power device applications because of a high Baliga’s figure and the availability of large-scale wafers. However, the piezoresistive effect of β-Ga2O3 has not been investigated in detail, and its piezoresistive coefficient has not been reported. This study evaluates the piezoresistive coefficient of β-Ga2O3 in the <010> direction using a mechanical stress simulator and a device simulator, which includes our piezoresistive effect model. In this study, the piezoresistive effect model and simulation method are applied to β-Ga2O3 for the first time. The piezoresistor model of β-Ga2O3 is simulated to evaluate the piezoresistive coefficient of β-Ga2O3. The experimentally obtained gauge factor with and without the contact effect is −5.8 and −3.6, respectively. The piezoresistive coefficient with and without the contact effect is −2.0 × 10−11 Pa−1 and −1.2 × 10−11 Pa−1, respectively. The piezoresistive coefficient is used to evaluate the piezoresistive effect at 1000 °C through thermal analysis.
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献