GaN substrates having a low dislocation density and a small off-angle variation prepared by hydride vapor phase epitaxy and maskless-3D

Author:

Yoshida TakehiroORCID,Shibata Masatomo

Abstract

Abstract To produce high-quality GaN (0001) substrates with a low threading dislocation density (TDD) and a small off-angle variation, we have developed a technique named the “maskless-3D method.” This method, which is applied during GaN boule growth by hydride vapor phase epitaxy (HVPE), induces three-dimensional (3D) growth on a normal GaN (0001) seed substrate. We showed that by an appropriate choice of HVPE conditions, and without using a mask, the 3D growth shape was controlled to eliminate the c-plane and thereby suppress the propagation of dislocations from the seed. Subsequently, two-dimensional (2D) growth was carried out on the 3D structure. This 2D growth area was machined to produce a 2 inch GaN substrate with a TDD of about 4 × 105 cm−2 and an off-angle variation of 0.05°. We also confirmed that it was possible to insert the 3D growth area twice, thereby further reducing the TDD to 104 cm−2.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3