CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism

Author:

Appe Seetharam Nagesh12,G Arulselvi1,GN Balaji3

Affiliation:

1. Department of Computer Science and Engineering, Annamalai University, Chidambaram, Tamilnadu, India

2. Department of Information Technology, CVR College of Engineering, Hyderabad, India

3. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India

Abstract

Background One of the key elements in maintaining the consistent marketing of tomato fruit is tomato quality. Since ripeness is the most important factor for tomato quality in the viewpoint of consumers, determining the stages of tomato ripeness is a fundamental industrial concern with regard to tomato production to obtain a high quality product. Since tomatoes are one of the most important crops in the world, automatic ripeness evaluation of tomatoes is a significant study topic as it may prove beneficial in ensuring an optimal production of high-quality product, increasing profitability. This article explores and categorises the various maturity/ripeness phases to propose an automated multi-class classification approach for tomato ripeness testing and evaluation. Methods Object detection is the critical component in a wide variety of computer vision problems and applications such as manufacturing, agriculture, medicine, and autonomous driving. Due to the tomato fruits’ complex identification background, texture disruption, and partial occlusion, the classic deep learning object detection approach (YOLO) has a poor rate of success in detecting tomato fruits. To figure out these issues, this article proposes an improved YOLOv5 tomato detection algorithm. The proposed algorithm CAM-YOLO uses YOLOv5 for feature extraction, target identification and Convolutional Block Attention Module (CBAM). The CBAM is added to the CAM-YOLO to focus the model on improving accuracy. Finally, non-maximum suppression and distance intersection over union (DIoU) are applied to enhance the identification of overlapping objects in the image. Results Several images from the dataset were chosen for testing to assess the model’s performance, and the detection performance of the CAM-YOLO and standard YOLOv5 models under various conditions was compared. The experimental results affirms that CAM-YOLO algorithm is efficient in detecting the overlapped and small tomatoes with an average precision of 88.1%.

Publisher

PeerJ

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3