Multi-stage tomato fruit recognition method based on improved YOLOv8

Author:

Fu Yuliang,Li Weiheng,Li Gang,Dong Yuanzhi,Wang Songlin,Zhang Qingyang,Li Yanbin,Dai Zhiguang

Abstract

IntroductionIn the field of facility agriculture, the accurate identification of tomatoes at multiple stages has become a significant area of research. However, accurately identifying and localizing tomatoes in complex environments is a formidable challenge. Complex working conditions can impair the performance of conventional detection techniques, underscoring the necessity for more robust methods.MethodsTo address this issue, we propose a novel model of YOLOv8-EA for the localization and identification of tomato fruit. The model incorporates a number of significant enhancements. Firstly, the EfficientViT network replaces the original YOLOv8 backbone network, which has the effect of reducing the number of model parameters and improving the capability of the network to extract features. Secondly, some of the convolutions were integrated into the C2f module to create the C2f-Faster module, which facilitates the inference process of the model. Third, the bounding box loss function was modified to SIoU, thereby accelerating model convergence and enhancing detection accuracy. Lastly, the Auxiliary Detection Head (Aux-Head) module was incorporated to augment the network's learning capacity.ResultThe accuracy, recall, and average precision of the YOLOv8-EA model on the self-constructed dataset were 91.4%, 88.7%, and 93.9%, respectively, with a detection speed of 163.33 frames/s. In comparison to the baseline YOLOv8n network, the model weight was increased by 2.07 MB, and the accuracy, recall, and average precision were enhanced by 10.9, 11.7, and 7.2 percentage points, respectively. The accuracy, recall, and average precision increased by 10.9, 11.7, and 7.2 percentage points, respectively, while the detection speed increased by 42.1%. The detection precision for unripe, semi-ripe, and ripe tomatoes was 97.1%, 91%, and 93.7%, respectively. On the public dataset, the accuracy, recall, and average precision of YOLOv8-EA are 91%, 89.2%, and 95.1%, respectively, and the detection speed is 1.8 ms, which is 4, 4.21, and 3.9 percentage points higher than the baseline YOLOv8n network. This represents an 18.2% improvement in detection speed, which demonstrates good generalization ability.DiscussionThe reliability of YOLOv8-EA in identifying and locating multi-stage tomato fruits in complex environments demonstrates its efficacy in this regard and provides a technical foundation for the development of intelligent tomato picking devices.

Publisher

Frontiers Media SA

Reference36 articles.

1. CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism;Appe;PeerJ Comput. Sci.,2023

2. Clustered tomato detection and picking point location using machine learning-aided image analysis for automatic robotic harvesting;Bai;Precis. Agric.,2023

3. EfficientViT: lightweight multi-scale attention for high-resolution dense prediction;Cai,2023

4. Run, don’t walk: Chasing higher FLOPS for faster neural networks;Chen,2023

5. MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection;Chen;Comput. Electron. Agric.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3