Enhanced tomato detection in greenhouse environments: a lightweight model based on S-YOLO with high accuracy

Author:

Sun Xiangyang

Abstract

IntroductionEfficiently and precisely identifying tomatoes amidst intricate surroundings is essential for advancing the automation of tomato harvesting. Current object detection algorithms are slow and have low recognition accuracy for occluded and small tomatoes.MethodsTo enhance the detection of tomatoes in complex environments, a lightweight greenhouse tomato object detection model named S-YOLO is proposed, based on YOLOv8s with several key improvements: (1) A lightweight GSConv_SlimNeck structure tailored for YOLOv8s was innovatively constructed, significantly reducing model parameters to optimize the model neck for lightweight model acquisition. (2) An improved version of the α-SimSPPF structure was designed, effectively enhancing the detection accuracy of tomatoes. (3) An enhanced version of the β-SIoU algorithm was proposed to optimize the training process and improve the accuracy of overlapping tomato recognition. (4) The SE attention module is integrated to enable the model to capture more representative greenhouse tomato features, thereby enhancing detection accuracy.ResultsExperimental results demonstrate that the enhanced S-YOLO model significantly improves detection accuracy, achieves lightweight model design, and exhibits fast detection speeds. Experimental results demonstrate that the S-YOLO model significantly enhances detection accuracy, achieving 96.60% accuracy, 92.46% average precision (mAP), and a detection speed of 74.05 FPS, which are improvements of 5.25%, 2.1%, and 3.49 FPS respectively over the original model. With model parameters at only 9.11M, the S-YOLO outperforms models such as CenterNet, YOLOv3, YOLOv4, YOLOv5m, YOLOv7, and YOLOv8s, effectively addressing the low recognition accuracy of occluded and small tomatoes.DiscussionThe lightweight characteristics of the S-YOLO model make it suitable for the visual system of tomato-picking robots, providing technical support for robot target recognition and harvesting operations in facility environments based on mobile edge computing.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3