Improved Tomato Leaf Disease Recognition Based on the YOLOv5m with Various Soft Attention Module Combinations

Author:

Lee Yong-Suk1ORCID,Patil Maheshkumar Prakash2ORCID,Kim Jeong Gyu1,Choi Seong Seok12,Seo Yong Bae1,Kim Gun-Do1ORCID

Affiliation:

1. Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea

2. Industry University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea

Abstract

To reduce production costs, environmental effects, and crop losses, tomato leaf disease recognition must be accurate and fast. Early diagnosis and treatment are necessary to cure and control illnesses and ensure tomato output and quality. The YOLOv5m was improved by using C3NN modules and Bidirectional Feature Pyramid Network (BiFPN) architecture. The C3NN modules were designed by integrating several soft attention modules into the C3 module: the Convolutional Block Attention Module (CBAM), Squeeze and Excitation Network (SE), Efficient Channel Attention (ECA), and Coordinate Attention (CA). The C3 modules in the Backbone and Head of YOLOv5 model were replaced with the C3NN to improve feature representation and object detection accuracy. The BiFPN architecture was implemented in the Neck of the YOLOv5 model to effectively merge multi-scale features and improve the accuracy of object detection. Among the various combinations for the improved YOLOv5m model, the C3ECA-BiFPN-C3ECA-YOLOv5m achieved a precision (P) of 87.764%, a recall (R) of 87.201%, an F1 of 87.482, an mAP.5 of 90.401%, and an mAP.5:.95 of 68.803%. In comparison with the YOLOv5m and Faster-RCNN models, the improved models showed improvement in P by 1.36% and 7.80%, R by 4.99% and 5.51%, F1 by 3.18% and 6.86%, mAP.5 by 1.74% and 2.90%, and mAP.5:.95 by 3.26% and 4.84%, respectively. These results demonstrate that the improved models have effective tomato leaf disease recognition capabilities and are expected to contribute significantly to the development of plant disease detection technology.

Funder

National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3