Tomato Anomalies Detection in Greenhouse Scenarios Based on YOLO-Dense

Author:

Wang Xuewei,Liu Jun

Abstract

Greenhouse cultivation can improve crop yield and quality, and it not only solves people’s daily needs but also brings considerable gains to the agricultural staff. One of the most widely cultivated greenhouse crops is tomato, mainly because of its high nutritional value and its good taste. However, there are a number of anomalies for the tomato crop that pose a threat for its greenhouse cultivation. Detection of tomato anomalies in the complex natural environment is an important research direction in the field of plant science. Automated identification of tomato anomalies is still a challenging task because of its small size and complex background. To solve the problem of tomato anomaly detection in the complex natural environment, a novel YOLO-Dense was proposed based on a one-stage deep detection YOLO framework. By adding a dense connection module in the network architecture, the network inference speed of the proposed model can be effectively improved. By using the K-means algorithm to cluster the anchor box, nine different sizes of anchor boxes with potential objects to be identified were obtained. The multiscale training strategy was adopted to improve the recognition accuracy of objects at different scales. The experimental results show that the mAP and detection time of a single image of the YOLO-Dense network is 96.41% and 20.28 ms, respectively. Compared with SSD, Faster R-CNN, and the original YOLOv3 network, the YOLO-Dense model achieved the best performance in tomato anomaly detection under a complex natural environment.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference34 articles.

1. Detection of diseases, identification and diversity of viruses: a review.;Alemu;J. Biol. Agric. Healthc.,2015

2. K-Means++: the advantages of careful seeding;Arthur;Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007,2007

3. A review on the main challenges in automatic plant disease identification based on visible range images.;Barbedo;Biosyst. Eng.,2016

4. Yolo-face: a real-time face detector.;Chen;Vis. Comput.,2020

5. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model.;Fu;Precis. Agric.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3