Data in the time of COVID-19: a general methodology to select and secure a NoSQL DBMS for medical data

Author:

ElDahshan Kamal A.1,AlHabshy AbdAllah A.1,Abutaleb Gaber E.1

Affiliation:

1. Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt

Abstract

Background As the COVID-19 crisis endures and the virus continues to spread globally, the need for collecting epidemiological data and patient information also grows exponentially. The race against the clock to find a cure and a vaccine to the disease means researchers require storage of increasingly large and diverse types of information; for doctors following patients, recording symptoms and reactions to treatments, the need for storage flexibility is only surpassed by the necessity of storage security. The volume, variety, and variability of COVID-19 patient data requires storage in NoSQL database management systems (DBMSs). But with a multitude of existing NoSQL DBMSs, there is no straightforward way for institutions to select the most appropriate. And more importantly, they suffer from security flaws that would render them inappropriate for the storage of confidential patient data. Motivation This paper develops an innovative solution to remedy the aforementioned shortcomings. COVID-19 patients, as well as medical professionals, could be subjected to privacy-related risks, from abuse of their data to community bullying regarding their medical condition. Thus, in addition to being appropriately stored and analyzed, their data must imperatively be highly protected against misuse. Methods This paper begins by explaining the five most popular categories of NoSQL databases. It also introduces the most popular NoSQL DBMS types related to each one of them. Moreover, this paper presents a comparative study of the different types of NoSQL DBMS, according to their strengths and weaknesses. This paper then introduces an algorithm that would assist hospitals, and medical and scientific authorities to choose the most appropriate type for storing patients’ information. This paper subsequently presents a set of functions, based on web services, offering a set of endpoints that include authentication, authorization, auditing, and encryption of information. These functions are powerful and effective, making them appropriate to store all the sensitive data related to patients. Results and Contributions This paper presents an algorithm to select the most convenient NoSQL DBMS for COVID-19 patients, medical staff, and organizations data. In addition, the paper proposes innovative security solutions that eliminate the barriers to utilizing NoSQL DBMSs to store patients’ data. The proposed solutions resolve several security problems including authentication, authorization, auditing, and encryption. After implementing these security solutions, the use of NoSQL DBMSs will become a much more appropriate, safer, and affordable solution to storing and analyzing patients’ data, which would contribute greatly to the medical and research effort against COVID-19. This solution can be implemented for all types of NoSQL DBMSs; implementing it would result in highly securing patients’ data, and protecting them from any downsides related to data leakage.

Publisher

PeerJ

Subject

General Computer Science

Reference38 articles.

1. Recovery and concurrency challenging in big data and NoSQL database systems;Abed;International Journal of Advanced Networking and Applications,2020

2. A comparison of current graph database models;Angles,2012

3. An algorithm for transformation of data from MySQL to NoSQL (MongoDB);Arora;International Journal of Advanced Studies in Computer Science and Engineering,2013

4. Bigtable: a distributed storage system for structured data;Chang;ACM Transactions on Database Systems,2008

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3