Cloud based evaluation of databases for stock market data

Author:

Singh Baldeep,Martyr Randall,Medland Thomas,Astin Jamie,Hunter Gordon,Nebel Jean-Christophe

Abstract

AbstractAbout fifty years ago, the world’s first fully automated system for trading securities was introduced by Instinet in the US. Since then the world of trading has been revolutionised by the introduction of electronic markets and automatic order execution. Nowadays, financial institutions exploit the associated flow of daily data using more and more advanced analytics to gain valuable insight on the markets and inform their investment decisions. In particular, time series of Open High Low Close prices and Volume data are of special interest as they allow identifying trading patterns useful for forecasting both stock prices and volumes. Traditionally, relational databases have been used to store this data; however, the ever-growing volume of this data, the adoption of the hybrid cloud model, and the availability of novel non-relational databases which claim to be more scalable and fault tolerant raise the question whether relational databases are still the most appropriate. In this study, we define a set of criteria to evaluate performance of a variety of databases on a hybrid cloud environment. There, we conduct experiments using standard and custom workloads. Results show that migration to a MongoDB database would be most beneficial in terms of cost, storage space, and throughput. In addition, organisations wishing to take advantage of autoscaling and the maintenance power of the cloud should opt for a cloud native solution.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference99 articles.

1. Abdelhafiz BM, Elhadef M (2021) January. Sharding Database for Fault Tolerance and Scalability of Data. In 2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM) (pp. 17–24). IEEE.

2. Abourezq M, Idrissi A (2016) Database-as-a-service for big data: An overview. International Journal of Advanced Computer Science and Applications (IJACSA), 7(1).

3. Agarwal S, Rajan KS (2017) Analyzing the performance of NoSQL vs. SQL databases for Spatial and Aggregate queries. In Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings (Vol. 17, No. 1, p. 4).

4. Agarwal T, Quelle H, Ryan C (2020) Stock Trend Evolution. University of Arizona.

5. Ahmad AAS, Andras P (2019) Scalability analysis comparisons of cloud-based software services. Journal of Cloud Computing 8(1):1–17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3