Bigtable

Author:

Chang Fay1,Dean Jeffrey1,Ghemawat Sanjay1,Hsieh Wilson C.1,Wallach Deborah A.1,Burrows Mike1,Chandra Tushar1,Fikes Andrew1,Gruber Robert E.1

Affiliation:

1. Google, Inc.

Abstract

Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications place very different demands on Bigtable, both in terms of data size (from URLs to web pages to satellite imagery) and latency requirements (from backend bulk processing to real-time data serving). Despite these varied demands, Bigtable has successfully provided a flexible, high-performance solution for all of these Google products. In this article, we describe the simple data model provided by Bigtable, which gives clients dynamic control over data layout and format, and we describe the design and implementation of Bigtable.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference39 articles.

1. Integrating compression and execution in column-oriented database systems

2. Ailamaki A. DeWitt D. J. Hill M. D. and Skounakis M. 2001. Weaving relations for cache performance. The VLDB J. 169--180. Ailamaki A. DeWitt D. J. Hill M. D. and Skounakis M. 2001. Weaving relations for cache performance. The VLDB J. 169--180.

3. DB2 Parallel Edition

Cited by 1680 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An expandable and cost-effective data center network;Journal of Network and Computer Applications;2024-12

2. CUPID: An efficient spatio-temporal data engine;Future Generation Computer Systems;2024-12

3. SuccinctKV: a CPU-efficient LSM-tree Based KV Store with Scan-based Compaction;ACM Transactions on Architecture and Code Optimization;2024-09-13

4. Efficient Wear-Leveling-Aware Data Placement for LSM-Tree based key-value store on ZNS SSDs;Journal of King Saud University - Computer and Information Sciences;2024-09

5. Improving Performance of Key–Value Stores for High-Performance Storage Devices;Applied Sciences;2024-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3