Dynamic Data Infrastructure Security for Interoperable e-Healthcare Systems: A Semantic Feature-Driven NoSQL Intrusion Attack Detection Model

Author:

Sreejith R.1ORCID,Senthil S.2

Affiliation:

1. School of Computing and Information Technology, REVA University, Bangalore, India

2. School of Computer Science and Applications, REVA University, Bangalore, India

Abstract

The exponential rise in advanced software computing and low-cost hardware has broadened the horizon for the Internet of Medical Things (IoMT), interoperable e-Healthcare systems serving varied purposes including electronic healthcare records (EHRs) and telemedicine. However, being heterogeneous and dynamic in nature, their database security remains a challenge forever. Numerous intrusion attacks including bot-attack and malware have confined major classical databases towards e-Healthcare. Despite the robustness of NoSQL over the structured query language databases, the dynamic data nature over a heterogeneous environment makes it vulnerable to intrusion attacks, especially over interoperable e-Healthcare systems. Considering these challenges, this work proposed a first of its kind semantic feature-driven NoSQL intrusion attack (NoSQL-IA) detection model for interoperable e-Healthcare systems. This work assessed the efficacy of the different semantic feature-extraction methods like Word2Vec, Continuous Bag of Words, N-Skip Gram (SKG), Count Vectorizer, TF-IDF, and GLOVE towards NoSQL-IA prediction. Subsequently, to minimize computational exhaustion, different feature selection methods including Wilcoxon Rank Sum Test (WRST), significant predictor test, principal component analysis, Select K-Best, and variance threshold feature selection algorithms were employed. To alleviate the data imbalance problem, it applied different resampling methods including upsampling, downsampling, and synthetic minority oversampling technique (SMOTE) over the selected features. Later, Min–Max normalization was performed over the input feature vectors to alleviate any possibility of overfitting. Towards NoSQL-IA prediction, different machine learning methods like Multinomial Naïve Bayes, decision tree, logistic regression, support vector machine, k-NN, AdaBoost, Extra Tree Classifier, random forest ensemble, and XG-Boost were applied, which classified each input query as the regular query or the NoSQL-IA attack query. The depth performance assessment revealed that the use of Word2Vec features SKG in sync with VTFS feature selection and SMOTE resampling processed with the bootstrapped random forest classifier can provide the best performance in terms of high accuracy (98.86%), F-Measure (0.974), and area under the curve (AUC) (0.981), thus enabling it suitable for interoperable e-Healthcare database security.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3