Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments

Author:

Celeux Gilles1,Martin Olivier2,Lavergne Christian3

Affiliation:

1. Department of Mathematics, University Paris-Sud, Paris, France

2. INRA, Unité Protéomique, Montpellier, France,

3. Institut de Mathématiques et de Modélisation de Montpellier, Montpellier, France

Abstract

Data variability can be important in microarray data analysis. Thus, when clustering gene expression profiles, it could be judicious to make use of repeated data. In this paper, the problem of analysing repeated data in the model-based cluster analysis context is considered. Linear mixed models are chosen to take into account data variability and mixture of these models are considered. This leads to a large range of possible models depending on the assumptions made on both the covariance structure of the observations and the mixture model. The maximum likelihood estimation of this family of models through the EM algorithm is presented. The problem of selecting a particular mixture of linear mixed models is considered using penalized likelihood criteria. Illustrative Monte Carlo experiments are presented and an application to the clustering of gene expression profiles is detailed. All those experiments highlight the interest of linear mixed model mixtures to take into account data variability in a cluster analysis context.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3