Author:
Vávra Jan,Komárek Arnošt,Grün Bettina,Malsiner-Walli Gertraud
Funder
Grantová Agentura Ceské Republiky
Grantová Agentura, Univerzita Karlova
Austrian Science Fund
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science
Reference31 articles.
1. Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88(421), 9–25 (1993). https://doi.org/10.2307/2290687
2. Brooks, S., Gelman, A., Jones, G., et al.: Handbook for Markov Chain Monte Carlo, 2nd edn. Taylor & Francis (2011). https://doi.org/10.1201/b10905
3. Carvalho, C. M., Polson, N. G., Scott, J. G.: Handling sparsity via the horseshoe. In: van Dyk, D., Welling, M. (eds) Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, pp. 73–80 (2009)
4. Carvalho, C.M., Polson, N.G., Scott, J.G.: The horseshoe estimator for sparse signals. Biometrika 97(2), 465–480 (2010). https://doi.org/10.1093/biomet/asq017
5. Celeux, G., Martin, O., Lavergne, C.: Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments. Stat. Model. 5(3), 243–267 (2005). https://doi.org/10.1191/1471082x05st096oa