Model Fitness and Predictive Accuracy in Linear Mixed-Effects Models with Latent Clusters

Author:

Bello Yusuf,Yahya Waheed B.,AbdulRaheem Abdulrazaq

Abstract

In clustered data, observations within a cluster show similarity between themselves because they share common features different from observations in the other clusters. In a given population, different clustering may surface because correlation may occur across more than one dimension. The existing multilevel analysis techniques of the primal linear mixed-effect models are limited to natural clusters which are often not realistic to capture in real-life situations. Therefore, this paper proposes dual linear mixed models (DLMMs) for modeling unobserved latent clusters when such are present in data sets to yield appreciable gains in model fitness and predictive accuracy. The methodology explored the development and analysis of the dual linear mixed models (DLMMs) based on the derived latent clusters from the natural clusters using multivariate cluster analysis. A published data set on political analysis was used to demonstrate the efficiency of the proposed models. The proposed DLMMs have yielded minimum values of the models' assessment criteria (Akaike information criterion, Bayesian information criterion, and root mean squared error), and hence, outperformed the classical PLMMs in terms of model fitness and predictive accuracy.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detailed Study of the Object-Oriented Programming (OOP) Features in Python;British Journal of Computer, Networking and Information Technology;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3