Disentangling the impact of nested sources of variability on species growth processes: A mixture of multilevel mixed model approach.

Author:

Leumbe Fabrice Moudjieu12ORCID,Mortier Frédéric345,Takam Patrice Soh6,Picard Nicolas7,Félix Allah‐Barem8,Fidèle Baya9,Tadesse Mahlet G.10,Rossi Vivien12

Affiliation:

1. National Advanced School of Engineering of Yaoundé University of Yaoundé 1 Yaoundé Cameroon

2. CIRAD, Forêts et Sociétés Yaoundé Cameroon

3. CIRAD, Forêts et Sociétés Montpellier France

4. Forêts et Sociétés University Montpellier, CIRAD Montpellier France

5. Georgetown Environmental Justice Program Georgetown University Washington District of Columbia USA

6. Department of Mathematics University of Yaounde 1 Yaoundé Cameroon

7. GIP ECOFOR Paris France

8. Institut Centrafricain de Recherche Agronomique Central African Republic

9. Ministére des Eaux, Forêts Chasse et Pêche Central African Republic

10. Department of Mathematics and Statistics Georgetown University Washington District of Columbia USA

Abstract

SummaryThe understanding of tree growth processes is crucial for promoting sustainable forest management strategies. This is a challenging task in highly biodiverse ecosystems where many tree species are observed on very few individuals and the small sample sizes hinder a good fit of species‐specific models. We propose the use of finite mixture of random coefficient regression models with multilevel nested random effects to infer guild specific fixed and random effects while evaluating the relative importance of the nested sources of variability on goodness‐of‐fit. This approach extends finite mixture of linear mixed model used for longitudinal or single group structured data contexts. A dedicated expectation–maximisation algorithm is introduced for parameter estimation. Simulations are performed for the evaluation of the misspecification of nested‐grouping structures. This work has been motivated by data collected biennially in Central African rainforests from 1986 to 2010. We show the accuracy of the proposed approach in successfully reproducing individual growth processes and classifying tree species into well‐differentiated clusters with clear ecological interpretations. Moreover, results confirm that interindividual variability appears as the most important factor to explain tropical tree species growth process variability from Central Africa forests.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3