Abstract
By using CNFET technology in 32 nm node by the proposed SQI gate, two split bit-lines QSRAM architectures have been suggested to address the issue of increasing demand for storage capacity in IoT/IoVT applications. Peripheral circuits such as a novel quaternary to binary decoder for QSRAM have been offered. Various simulations on temperature, supply voltage, and access frequency have been done to evaluate and ensure the performance of the proposed SQI gate, suggested cells, and quaternary to binary decoder. Moreover, 1000 Monte-Carlo analyses on the fabrication parameters have been done to classify read and write delay and standby power of proposed cells along with PDP of the proposed quaternary to binary decoder. It is worth mentioning that the PDP of the proposed SQI gate, decoder, and average power consumption of suggested HF-QSRAM cell reached 0.92 aJ, 4.13 aJ, and 0.15 μW, respectively, which are approximately 80%, 91%, and 33% improvements in comparison with the best existing designs in the literature.
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献