Material Removal Rate Prediction for Sapphire Double-Sided CMP Based on RSM-SVM

Author:

Li ZhongyangORCID,Deng Zhaohui,Ge Jimin,Zhuo Rongjing,Wan Linlin

Abstract

As a crucial substrate material for optoelectronic materials, sapphire has important applications in both military and civilian fields. In order to achieve the final processing quality of sapphire substrate materials, double-sided chemical mechanical polishing (DS-CMP) is a necessary process, which is also a guarantee for the preparation of high-end LED chips. In this article, the sapphire DS-CMP processing plan based on the Box-Behnken design is obtained and experimented. Then, a hybrid approach of response surface method (RSM) and support vector machines (SVM) algorithm is established as the material removal rate (MRR) prediction model for sapphire DS-CMP. Furthermore, the material removal process of sapphire DS-CMP, the influence of response variables on the MRR of sapphire DS-CMP, and the prediction results of RSM-SVM on sapphire DS-CMP are analyzed respectively. From the experimental results, the maximum MRR obtained is 387.59 nm min−1, which is more than 6 times the reported MRR of single-sided CMP under similar process parameters. The mean square error of predicted value through RSM-SVM is basically around ±10% of the experimental value, which possess satisfied validity for the MRR prediction of sapphire DS-CMP. Finally, both top and bottom surface quality of sapphire wafers after DS-CMP processing was investigated.

Funder

National Natural Science Foundation of China

Special Fund for the Construction of Hunan Innovative Province

Natural Science Foundation of Hunan Province

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3