Simulating the Influence of Supporting Electrolyte Concentration on Copper Electrodeposition in Microvias

Author:

Braun T. M.ORCID,John J.,Jayaraju N.,Josell D.ORCID,Moffat T. P.ORCID

Abstract

Robust, void-free Cu electrodeposition in high-aspect ratio features relies on careful tuning of electrolyte additives, concentrations, and electrochemical parameters for a given feature dimension or wafer pattern. Typically, Cu electrodeposition in electronics manufacturing of microscale or larger features (i.e., microvias, through-holes, and high-density interconnects) employs a CuSO4–H2SO4 electrolyte containing millimolar levels of chloride and, at a minimum, micromolar levels of a polyether suppressor. Research and optimization efforts have largely focused on the relationship between electrolyte additives and growth morphology, with less attention given to the impact of supporting electrolyte. Accordingly, a computational study exploring the influence of supporting electrolyte on Cu electrodeposition in microvias is presented herein. The model builds upon prior experimental and computational research on localized Cu deposition by incorporating the full charge conservation equation with electroneutrality to describe potential variation in the presence of ionic gradients. In accord with experimental observations, simulations predict enhanced current localization to the microvia bottom as H2SO4 concentration is decreased. This phenomenon derives from enhanced electromigration within recessed features that accompanies the decrease of conductivity with local metal ion depletion. This beneficial aspect of low acid electrolytes is also impacted by feature density, CuSO4 concentration, and the extent of convective transport.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3