Simulation of Copper Electrodeposition in Millimeter Size Through-Silicon Vias

Author:

Braun T. M.ORCID,Josell D.ORCID,Deshpande S.,John J.,Moffat T. P.ORCID

Abstract

Computational predictions of copper deposition in millimeter size through-silicon vias (mm-TSV) are presented based on localized breakdown of a co-adsorbed polyether-chloride suppressor layer. The model builds upon previous work on localized Cu deposition in microscale TSV and through-holes by incorporating 3D fluid flow calculations to more effectively evaluate chemical transport of cupric ion and additives, both of which are critical to adlayer formation and disruption within the via. Simulations using potentiostatic and potentiodynamic waveforms are compared to previously reported filling experiments. Alternatively, the utility of galvanostatic control and variations in fluid flow are explored computationally. For appropriate applied potential(s) or current, deposition is localized to the via bottom, with subsequent growth proceeding in a bottom-up fashion. Selection of inappropriate current or potential waveforms, or forced convection conditions that supply insufficient cupric ion to the bottom of the via, results in prediction of voids. Simulations of deposition in via arrays (4 × 1) predict non-uniform growth across the arrays, with the passivation of individual vias associated with minor variations in convective flow and/or numerical perturbations in the simulation, that reflects the critical nature of the bifurcation process.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3