Author:
Eneman Geert,Witters Liesbeth,Collaert Nadine,Mitard Jerome,Hellings Geert,Yamaguchi Shinpei,De Keersgieter An,Hikavyy Andriy,Vincent Benjamin,Favia Paola,Bender Hugo,Veloso Anabela,Chiarella Thomas,Togo Mitsuhiro,Loo Roger,De Meyer Kristin,Mercha Abdelkarim,Horiguchi Naoto,Thean Aaron
Abstract
Novel device architectures offer improved scalability but come often at the price of increased layout sensitivity and a reduced or changed effectiveness of stressors and gate-last integration schemes. This work focuses on stress effects in n-type FinFETs and p-type Si1-xGex-channel pFETs, and relies mainly on TCAD results. It will be shown that on n-FinFETs, tensile stressed Contact Etch-Stop Layers (t-CESL) are less effective than on planar FETs when a gate-first scheme is used. For gate-last schemes, CESL is as effective as on planar FETs, moreover a strong boost is expected when compared to gate-first schemes. Tensile stressed gates are shown to be an effective stressor on gate-first n-FinFETs, but not on gate-last: in the latter case a slight mobility degradation is predicted. For pFETs with strained Si1-xGex-channels like the Implant-Free Quantum Well (IFQW) FET, it will be shown that elastic relaxation during source/drain recess is an important factor that reduces the effectiveness of Si1 yGey source/drain stressors. For scaled technologies, omitting the source/drain recess altogether and opting for a raised source/drain scheme is preferred. In IFQW pFETs, dependence of the drive current on transistor width is an important concern. It will be shown that a Si1 yGey source/drain reduces the layout dependence of IFQW FETs, an effect that is enhanced further when combined with a gate-last integration scheme.
Publisher
The Electrochemical Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献