An Empirical Latent Heat Flux Parameterization for the Noah Land Surface Model

Author:

Godfrey Christopher M.1,Stensrud David J.2

Affiliation:

1. School of Meteorology and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Proper partitioning of the surface energy fluxes that drive the evolution of the planetary boundary layer in numerical weather prediction models requires an accurate representation of initial land surface conditions. Unfortunately, soil temperature and moisture observations are unavailable in most areas and routine daily estimates of vegetation coverage and biomass are not easily available. This gap in observational capabilities seriously hampers the evaluation and improvement of land surface parameterizations, since model errors likely relate to improper initial conditions as much as to inaccuracies in the parameterizations. Two unique datasets help to overcome these difficulties. First, 1-km fractional vegetation coverage and leaf area index values can be derived from biweekly maximum normalized difference vegetation index composites obtained from daily observations by the Advanced Very High Resolution Radiometer onboard NOAA satellites. Second, the Oklahoma Mesonet supplies multiple soil temperature and moisture measurements at various soil depths each hour. Combined, these two datasets provide significantly improved initial conditions for a land surface model and allow an evaluation of the accuracy of the land surface model with much greater confidence than previously. Forecasts that both include and neglect these unique land surface observations are used to evaluate the value of these two data sources to land surface initializations. The dense network of surface observations afforded by the Oklahoma Mesonet, including surface flux data derived from special sensors, provides verification of the model results, which indicate that predicted latent heat fluxes still differ from observations by as much as 150 W m−2. This result provides a springboard for assessing parameterization errors within the model. A new empirical parameterization developed using principal-component regression reveals simple relationships between latent heat flux and other surface observations. Periods of very dry conditions observed across Oklahoma are used advantageously to derive a parameterization for evaporation from bare soil. Combining this parameterization with an empirical canopy transpiration scheme yields improved sensible and latent heat flux forecasts and better partitioning of the surface energy budget. Surface temperature and mixing ratio forecasts show improvement when compared with observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference90 articles.

1. Towards a benchmark for land surface models.;Abramowitz;Geophys. Res. Lett.,2005

2. Neural error regression diagnosis (NERD): A tool for model bias identification and prognostic data assimilation.;Abramowitz;J. Hydrometeor.,2006

3. Systematic bias in land surface models.;Abramowitz;J. Hydrometeor.,2007

4. Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions.;Anthes;J. Climate Appl. Meteor.,1984

5. Mesoscale objective analysis using weighted time-series observations.;Barnes,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3