Systematic Bias in Land Surface Models

Author:

Abramowitz Gab1,Pitman Andy2,Gupta Hoshin3,Kowalczyk Eva4,Wang Yingping4

Affiliation:

1. University of New South Wales, Sydney, Australia, and CSIRO Marine and Atmospheric Research, Victoria, Australia

2. University of New South Wales, Sydney, Australia

3. Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

4. CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Abstract

Abstract A neural network–based flux correction technique is applied to three land surface models. It is then used to show that the nature of systematic model error in simulations of latent heat, sensible heat, and the net ecosystem exchange of CO2 is shared between different vegetation types and indeed different models. By manipulating the relationship between the dataset used to train the correction technique and that used to test it, it is shown that as much as 45% of per-time-step model root-mean-square error in these flux outputs is due to systematic problems in those model processes insensitive to changes in vegetation parameters. This is shown in the three land surface models using flux tower measurements from 13 sites spanning 2 vegetation types. These results suggest that efforts to improve the representation of fundamental processes in land surface models, rather than parameter optimization, are the key to the development of land surface model ability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3