Correction to a Simple Biosphere Model 2 (SiB2) Simulation of Energy and Carbon Dioxide Fluxes over a Wheat Cropland in East China Using the Random Forest Model

Author:

Zhang Shiqi,Duan Zexia,Zhou Shaohui,Gao Zhiqiu

Abstract

Modeling the heat and carbon dioxide (CO2) exchanges in agroecosystems is critical for better understanding water and carbon cycling, improving crop production, and even mitigating climate change, in agricultural regions. While previous studies mainly focused on simulations of the energy and CO2 fluxes in agroecosystems on the North China Plain, their corrections, simulations and driving forces in East China are less understood. In this study, the dynamic variations of heat and CO2 fluxes were simulated by a standalone version of the Simple Biosphere 2 (SiB2) model and subsequently corrected using a Random Forest (RF) machine learning model, based on measurements from 1 January to 31 May 2015–2017 in eastern China. Through validation with direct measurements, it was found that the SiB2 model overestimated the sensible heat flux (H) and latent heat flux (LE), but underestimated soil heat flux (G0) and CO2 flux (Fc). Thus, the RF model was used to correct the results modeled by SiB2. The RF model showed that disturbances in temperature, net radiation, the G0 output of SiB2, and the Fc output of SiB2 were the key driving factors modulating the H, LE, G0, and Fc. The RF model performed well and significantly reduced the biases for H, LE, G0, and Fc simulated by SiB2, with higher R2 values of 0.99, 0.87, 0.75, and 0.71, respectively. The SiB2 and RF models combine physical mechanisms and mathematical correction to enable simulations with both physical meaning and accuracy.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference67 articles.

1. Seasonal and Interannual Variations of Carbon Exchange over a Rice-Wheat Rotation System on the North China Plain;Chen;Adv. Atmos. Sci.,2015

2. Jing, Z., Jing, Y., Zhang, F., Qiu, R., and Wido, H. (2019). Application of the Simple Biosphere Model 2 (SiB2) with Irrigation Module to a Typical Low-Hilly Red Soil Farmland and the Sensitivity Analysis of Modeled Energy Fluxes in Southern China. Water, 11.

3. Vegetation Physiological Parameter Setting in the Simple Biosphere Model 2 (SiB2) for Alpine Meadows in the Upper Reaches of Heihe River;Li;Sci. China Earth Sci.,2015

4. Characteristics and Simulation of Heat and CO2 Fluxes over a Typical Cropland During the Winter Wheat Growing in the North China Plain;Yuan;Envrion. Sci.,2010

5. Study of the surface energy flux at the three different sites over China based on SiB2 and SiB3;Zhang;Acta Meteorol. Sin.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3