Parameterization of soil evaporation and coupled transport of moisture and heat for arid and semiarid regions

Author:

Meng Chunlei,Jin Haidong,Jin Bo

Abstract

Soil moisture is an important parameter in numerical weather forecasting and climate projection studies, and it is extremely important for arid and semiarid areas. Different from those in relatively wet areas, for arid and semiarid areas, mechanisms associated with the transportation, condensation, and evaporation of water vapor in soil interior cannot be neglected. In this paper, schemes associated with soil evaporation and coupled transport of soil moisture and heat were developed for the integrated urban land model (IUM) to improve the simulation of soil moisture in arid and semiarid areas. The whole layer soil evaporation (WSE) scheme was developed to improve the simulation of soil evaporation. The soil’s inner layer water vapor transport is considered a part of WSE. The transport of water and heat in the inner soil was linked to the phase change of water. The NASA Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture product and 10-cm volumetric soil moisture observations in 358 autonomic soil moisture observation sites were used for validating the simulation results. The results indicate that after using the WSE scheme and considering the coupled transport of moisture and heat in the soil interior, the simulation of soil moisture was improved definitely. For June, July, and August, the biases of soil moisture simulation decreased by approximately 22.5, 34.4, and 27.5%, respectively, while the RMSEs decrease by approximately 7.0, 8.7, and 9.6%, respectively. The improvement of soil moisture simulation indicates that in arid and semiarid areas soil water vapor transport is important and cannot be neglected.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3