Local and Regional Scale Evaluation of the Integrated Urban Land Model by Comparing with the Common Land Model

Author:

Meng Chunlei1ORCID,Zhang Wenlong1ORCID

Affiliation:

1. Institute of Urban Meteorology, China Meteorological Administration, 100089 Beijing, China

Abstract

Land surface evaporation is not only an important parameter in natural land surface modeling, but a crucial important parameter in urban hydrology modeling. A whole-layer soil evaporation scheme was developed in the integrated urban land model (IUM) to improve the soil evaporation simulation. The impervious surface evaporation (ISE) was used as a component of urban water balance equation. In this paper, the integrated urban land model was validated at one desert site and six urban road sites to emphasize the improvement in the evaporation simulations for arid and urban areas. A sensitivity analysis was implemented in seven basins to expand the utility of the whole layer soil evaporation scheme. For the urban road sites, the validation results indicate that imperious surface evaporation (ISE) plays a crucial role in road surface temperature (RST) simulations on rainy days. For the desert site, the validation results show that the inner layer evaporation is very important in arid regions. For the basins, the analysis results indicate that the relative monthly mean differences in the evapotranspiration (ET) between the simulations with (IUM) and without (Common Land Model (CoLM)) considering the inner layer evaporation range from −8% to 8%, which is proportional to the degree of dryness. In arid areas, especially deserts, the inner layer soil evaporation could not be neglected.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using nighttime light data to estimate water evaporation inside buildings in China's urban areas;JAWRA Journal of the American Water Resources Association;2023-02-16

2. Mechanisms and Empirical Modeling of Evaporation from Hardened Surfaces in Urban Areas;International Journal of Environmental Research and Public Health;2021-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3